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Introduction

u One-to-One Graph Matching in Computer Vision

Å Action Recognition  

Å Feature Point Matching

Å Multi -Target Tracking

Å Person Re-Identification
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Introduction

u Most existing works focus on

Å Feature and/or metric learning [Zhao et al., CVPR 2014, Liu et al., ECCV 2010] 

Å Developing better solvers [Cho et al., ECCV 2010, Zhou & De la Torre, CVPR 2013]

u The optimalsolution does not necessarily yield the correctmatching assignment

u To improving the matching results, we propose 

Å to consider more feasible solutions

Å a principle approach to combine the solutions
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One-to-One Graph Matching

u Formulating it as a constrained binary program
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One-to-One Graph Matching

u Examples of joint matching distribution ὴὢ and cost Ὢὢ in different applications

Å Multi -target tracking [Zheng et al., CVPR 2008] and person re-identification [Das et al., ECCV 

2014 ]

Å Feature point matching [Leordeanuet al., IJCV 2011]

Å Stereo matching [Meltzer et al., ICCV 2005] and iterative closest point [Zheng, IJCV 1994] 

higher-order constraints in addition to one-to-one constraints
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Marginalization VS MAP Estimates

u In general, globally optimal solution may or may not be easily achieved.

u Even the optimal solution does not necessarilyyield the correct matching

assignment
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Å Visual similarity

Å Other ambiguities in the matching space
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Marginalization VS MAP Estimates

Motivation to use marginalization

V Encoding the entire distribution to untangle potential ambiguities

U MAP only considers one single value of that distribution 

V Improving matching ranking due to averaging / smoothing property

Exact marginalization is NP-hard

U Requiring all feasible permutations to built the joint distribution

Solution

V Approximation using m-Best solutions
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Marginalization Using m-Best Solutions

Marginalization by considering a fraction of the matching space

u Using m-highest joint probabilities ὴὢ / m-lowest values for Ὢὢ
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