Detection- and Trajectory-Level Exclusion in Multiple Object Tracking

Anton Milan¹ (né Andriyenko)
¹Department of Computer Science, TU Darmstadt, Germany

Konrad Schindler²
²Photogrammetry and Remote Sensing Group, ETH Zürich, Switzerland

Stefan Roth¹

¹ETH Zürich, Switzerland

Motivation and Overview

Accurate multi-target tracking requires that:
• two simultaneous detections cannot be caused by the same target, and
• two trajectories have no spatio-temporal overlap.

Dealing with both requirements is challenging. Previous work handled exclusion either only at the detection level, e.g., [3] or only at the trajectory level, e.g., [2].

We introduce simultaneous exclusion handling for both:

Detection Level

Trajectory Level

Our Contributions

• Exclusion modeling at detection level
• Exclusion modeling at trajectory level
• Novel co-occurrence label cost
• α-expansion-based energy minimization algorithm
• Statistics-based design of energy components

Discrete-Continuous Energy with Exclusion

Discrete-continuous formulation (cf. [1]):

\[E(f, T) = \sum_{t \in T} \phi(t, T) + \sum_{t \in T} \psi(f, t) + \sum_{t \in T} \varphi(f, t) \]

Labeling

Trajectories

Detection-Level Exclusion

Goal: Enforce unique IDs for all detections in one frame.

Temporal smoothing only [1]
Smoothing and exclusion

Apply cost \(\psi(f, t) = \begin{cases} 0, & \text{if } t_i = f \ \text{otherwise} \end{cases} \)

to all edges between simultaneous detector responses \((d, d') \in E \sum \{ (d, d') | d \neq d', |D_i - D_j| \leq s/2 \} \) allow for occasional double detection

Trajectory-Level Exclusion

Goal: Suppress solutions with incompatible trajectories.

Simple per trajectory cost \(L^D \)

Pairwise label cost \(L^P \)

A co-occurrence term penalizes a labeling \(f \) with overlapping trajectories:

\[\phi^C(\alpha, \beta) = \begin{cases} 1, & \text{if } \exists d, d': f_d = \alpha \land f_{d'} = \beta \ \text{otherwise} \end{cases} \]

Optimization

• Discrete part has non-submodular, global terms.
• Continuous part is non-convex.

Alternate between both energy parts:

Discrete

Continuous

α-expansion augmented with greedy label removal.

Gradient-based optimization.

Statistical Analysis

Goal: Derive functional form of energy from real data.

Evaluation script [1, 3].

Publicly available ground truth, detections and individual energy components from a statistical analysis of ground-truth annotations.

Experiments

• Public, challenging datasets: PETS’09, TUD and ETH.
• Publicly available ground truth, detections and evaluation script [1, 3].

Quantitative evaluation

LOO cross-validation results on six sequences

Comparison to other methods

Our method*: 77.3% 87.2% 66.4% 8.2% 69 57

Augmented with a simple tracklet linking scheme.

Summary

We incorporated exclusion modeling into a discrete-continuous CRF
• at the detection level using non-submodular constraints,
• at the trajectory level using a co-occurrence label cost.

Moreover, we proposed an expansion move-based optimization scheme and presented a strategy to derive individual energy components from a statistical analysis of ground-truth annotations.

Acknowledgements: We would like to thank B. Andres, T. Baier and J. Kappes for releasing OpenGM, as well as for helpful discussions. We also thank T. Pham for pointing out some implementation issues.